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Abstract
Due to the increasing demand for urban
transport in the last few years, the number
of vehicles in cities is rising, which results
in traffic jams, lack of parking places, and
excessive pollution. These problems can
be solved with ridesharing. Nowadays
there are two transport service types: taxi
service for people and delivery service for
parcels, which operate separately.

In this work, we propose a solution
that combines these two services together,
which should increase the number of
shared rides and therefore lower the num-
ber of vehicles in cities. We study the lit-
erature covering the topic of shared rides
between people and parcels. We introduce
an existing heuristic method and then we
propose improvements to this method us-
ing the Insertion heuristic. We evaluate
both of these methods on real data from
New York City and compare the perfor-
mances. The improved method managed
to lower the mileage by 40 % and decrease
the number of used vehicles by 28 %.

Keywords: DARP, SARP, ridesharing,
ridesharing in urban areas, package
delivery, ridesharing with delivery,
insertion heuristic, SiMoD

Supervisor: Ing. David Fiedler
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Abstrakt
Vzhledem k rostoucí poptávce po měst-
ské dopravě v posledních letech stoupá
počet vozidel ve městech, což má za násle-
dek dopravní zácpy, nedostatek parkova-
cích míst a nadměrné znečištění ovzduší.
Tyto problémy lze vyřešit ridesharingem.
V současné době existují dva typy pře-
pravních služeb: taxi služba pro lidi a do-
ručovací služba pro zásilky, které fungují
samostatně.

V této práci navrhujeme řešení, které
kombinuje tyto dvě služby dohromady,
což by mělo zvýšit počet sdílených jízd a
tím snížit počet vozidel ve městech. Stu-
dujeme literaturu zabývající se tématem
sdílených jízd lidí a zásilek. Představíme
existující heuristickou metodu a poté na-
vrhneme vylepšení této metody pomocí
Insertion heuristiky. Obě tyto metody vy-
hodnocujeme na reálných datech z New
Yorku a porovnáváme výsledky. Vylepšená
metoda dokázala snížit počet najetých ki-
lometrů o 40 % a snížit počet použitých
vozidel o 28 %.

Klíčová slova: DARP, SARP, sdílené
jízdy, sdílené jízdy v městských oblastech,
doručování zásilek, sdílené jízdy s
doručováním, insertion heuristika, SiMoD

Překlad názvu: Kombinované řešení
sdílených jízd a doručování v městských
oblastech
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Chapter 1
Introduction

The number of vehicles in urban areas is rising due to ever increasing
demand for urban transport. In recent years, the growing demand for delivery
of parcels from online shops and for food delivery also contributes to the
increase in the number of vehicles in cities. This causes several issues: traffic
jams, noise, pollution and lack of parking places. These issues can be solved
by ridesharing. It decreases the number of vehicles needed to satisfy the
demand, and therefore also lowers transportation costs.

In today’s transportation systems, passengers and parcels are transported
separately since they have different transport requirements. The packages can
usually be picked up and delivered during the whole day and the demand is
known beforehand. In contrast, passengers have to be picked up and delivered
within short time windows, and the demand is not known in advance. And
most of the taxi seats and the trunks are usually empty which is inefficient
and uneconomical.

In urban areas, parcels usually have small dimensions and low weight,
so they can be transferred along with a passenger without difficulties since
passenger travel comfort and travel time will be affected minimally or not at
all. This leads us to the idea of combining these two services into one that
could simultaneously use the capacity of vehicles for people and for parcels.

1.1 Project Target

This project aims to study the methods for solving ridesharing in Mobility-
on-Demand systems combined with delivery.

We choose a suitable method that is able to solve real-world-sized instances
in a reasonable amount of time, uses a fleet of vehicles to transport passengers
and parcels, and was tested on real data. Then we integrate the selected
method into the SiMoD 1 tool and evaluate its performance and efficiency.

As a next step, we design an improved algorithm for ridesharing with
delivery, also implement it in SiMoD, and evaluate its results. We compare
the baseline method with the improved method in terms of mileage, the
number of used vehicles, the number of shared demands, the computational

1https://github.com/aicenter/simod

1
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1. Introduction .....................................
time, and vehicle occupancy. Finally, we analyze and discuss the results.
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Chapter 2
Literature review

Ridesharing with parcel delivery is a relatively new idea. Ridesharing allows
taxi services to reduce mileage and the number of cars, lowering transportation
costs and the number of vehicles in urban areas. By combining ridesharing
with parcel delivery we should improve these parameters even further.

The ridesharing problem has two basic scenarios: static and dynamic. In a
static scenario, all the requests are known beforehand thus we can calculate
complete vehicle plans in advance. In a dynamic scenario, however, we do
not know the demand beforehand, instead, the requests appear gradually and
the algorithm has to work with the new requests and the currently available
vehicles and create the plans in real-time.

Study [3] reviews different concepts of shared transportation of passengers
and freight. A common model of ridesharing with delivery uses centralized
ridesharing, i.e., we have a fleet of vehicles (taxis) that serves passengers and
parcels. But there is a wide variety of other models, for example, the parcels
can be transferred and temporarily stored in special lockers, the vehicles can
be autonomous, instead of vehicles we can use a dedicated railroad network
with automated parcel loading/unloading system [6], or we can utilize an
already existing network of public transport [9].

The problem of finding the best possible schedules for taxis to serve the
customers’ requests is known as Dial-a-Ride-Problem (DARP), which is a
generalization of Vehicle Routing Problem (VRP) [11].

One of the first models for ridesharing with delivery was proposed by
Li et al. in [7]. The authors introduce a newly developed class of models
called Share-a-Ride Problem (SARP) which allows passengers and parcels to
share the same vehicles. The presented model allows shared transportation
of passengers and parcels under the following conditions: there can be at
most 1 passenger onboard in each taxi and the ride of the passenger can
be interrupted only by a predefined number of stops, i.e., picking up or
dropping off a parcel. It also proposes the Freight Insertion Problem (FIP)
which is reduced SARP. FIP starts from an existing route for transporting
the passengers and it inserts the freight requests into the route (so that the
given conditions are fulfilled). Compared to a direct delivery service, the
shared model had better results in the total distance and profit. It was tested,

3



2. Literature review ...................................
however, on small instances only (3 taxis and 12 requests) since the solver
was searching for an optimal solution.

In [10] authors use the model from [7], but they do not allow any stops
during the ride of a passenger. Unlike in [7], authors propose a heuristic
method to solve this problem and they tested it on real data from Tokyo taxis
consisting of 22 000 requests throughout the whole day and over 4000 taxis.
This study investigates static scenario only. The improvement (in comparison
with direct delivery) was only around 5 % in terms of mileage, the number of
used cars, and overall profit.

The authors of [10] further extend this method in [5]. They introduce a
path-finding algorithm that speeds up the search of the shortest paths in a
graph, and a local search technique that improves the quality of the solution.
First, a solution for all requests is found using greedy search. Then a value
of effectiveness is calculated for each request and part of the requests with
the lowest effectiveness value are reinserted to increase overall benefit. This
routine is repeated until there is no increase in benefit. Here the difference
between the results of direct delivery and the heuristic method is more
significant than in [10]. The overall benefit is higher by 11 %, nearly 70 % of
requests are shared, and the number of used taxis is lower by 40 %.

The studies [1] and [14] propose models with Shared Autonomous Vehicles
(SAVs). Beirigo, Schulte, and Negenborn in [1] suggest a model that allows
transporting people and freight together with no limitations. For this purpose,
the model uses the SAVs. The authors also introduce the possibility of
transferring the packages between the taxis. In [14] authors explores the
variable capacity share-a-ride problem. This means the autonomous vehicles
used for transportation have different sizes and they are scheduled so that
the transport capacity is used where needed and is not wasted. The traffic
simulations are done on a square grid which is divided into several areas and
each area is of a specific type: residential, industrial, or campus. The model
uses these areas to simulate different demands flow at different times during
the day, for example, in the morning most requests will be from the residential
area to the industrial area. Both [1] and [14] solve the problem for small
instances only (up to 32 requests) using Mixed-integer linear programming.

Febbraro, Giglio, and Sacco explore the possibility of peer-to-peer rideshar-
ing with delivery in [4]. Peer-to-peer ridesharing is based on private drivers,
who are willing to share their ride with a passenger or a parcel. An algo-
rithm will match drivers to those passengers and parcels who have a similar
transportation itinerary.

An unusual model is introduced in work [12]. The passengers and parcels
are transported not by vehicles but by public bus service. The parcels are
transferred to bus stops and from there they are delivered to their destination
by micro-logistics operators who will use environmentally friendly vehicles.

Since AI is more and more popular, there are attempts to use it as the
solution to the ridesharing problem. Study [8] uses a deep learning method
to create the scheduling algorithm that is supposed to learn optimal taxi
dispatching policies. Authors in [13] try to achieve the same result by using

4



....................................2. Literature review

a genetic algorithm for this purpose.
Most of the methods mentioned above were designed to solve static scenario

only. Unfortunately, this is not applicable in the real world, where the scenario
is dynamic. However methods from [5], [8], and [13] are able to solve the
dynamic scenario and method in work [10] is designed well enough it can be
also used in dynamic mode.

When selecting a method to implement, we wanted a model that uses
a fleet of vehicles and centralized ridesharing. We also considered the size
of instances. We wanted a method that was capable of solving instances
of several thousand to several tens of thousands of requests per hour. As
a baseline method, we chose the heuristic algorithm from [10] because it
matches these requirements.

5
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Chapter 3
Problem description

The problem of finding the best possible schedules for taxis to serve the
customers’ requests is known as Dial-a-Ride-Problem (DARP), which is a
generalization of Vehicle Routing Problem. DARP is an NP-hard problem [7]
therefore we are not able to find the optimal solution for instances from
the real world. Thus it is typically solved using heuristic algorithms that
approximate the optimal solution and find it in a reasonable amount of time.
In this chapter, we will describe the Share-a-Ride-Problem (SARP). SARP is
an extension of DARP, where passengers share taxis with parcels.

The problem under consideration is supposed to be handled by a taxi
company. During the day, its dispatching system receives requests to serve.
The system supports two types of transportation requests: passenger requests
and parcel requests. Each transportation request is characterized by a pair of
actions - pickup action and delivery action. Both pickup and delivery actions
contain information about their locations with corresponding time windows,
in which they must be served.

From the list of given requests, the system will schedule taxis driving
around the city to serve requests. Each taxi has to depart at a depot and
return to this depot after finishing all its scheduled requests. At any given
time, neither the number of passengers nor the amount of freight can exceed
the taxi’s maximum capacity. The system allows the following transportation
scenarios for each taxi:..1. carry only one passenger..2. carry parcels..3. carry both one passenger and parcels
A taxi is allowed to deliver some parcels along with a passenger but is
not allowed to carry more than one passenger at the same time. When a
passenger is onboard, he will be delivered directly to the destination without
any interruption (i.e., no stop for parcel pickups or deliveries). Taxis are
allowed to wait at a pickup or delivery spot for a limited time. For safety
reasons, the total traveling time of a taxi in one day can not exceed a specified
maximum duration. The problem is to find the set of valid taxi trajectories
minimizing total cost. The total cost is the sum of the costs of all taxi routes.

7



3. Problem description..................................
3.1 Mathematical Formulation

The Share-a-Ride-Problem can be defined on a weighted and directed graph
G = (V , E). The set of nodes V includes subsets V po, V fo, V pd, V fd, V de. The
sets V po = {1, ..., n} and V fo = {n + 1, ..., n + m} indicate the passenger and
freight origins respectively. Passenger and freight destinations are represented
by sets V pd = {s + 1, ..., s + n} and V fd = {s + n + 1, ..., 2s} respectively.
The numbers n and m are the numbers of passengers and parcels respectively,
and s is the total number of requests, so s = n + m. Each node i ∈
V po ∪ V fo ∪ V pd ∪ V fd has a pair of parameters (ωi, ϕi): ωi represents the
maximum waiting time to serve request i and ϕi represents the change of
weight of the taxi after visiting node i. In the case of pickup, ϕi is positive,
in the case of delivery, it is negative. Additionally, every node i has a time
window [ei, li] (early time, late time) required for either the pickup or the
delivery. The time to travel from node i to node j is denoted by ti,j .

The set of depots is represented by V de = {2s + 1, ..., 2s + |K|}, and
K = {1, ..., |K|} is the set of taxis to serve possible requests. Taxi k has a
limited capacity σk and can work no longer than τmax

k minutes per day. Each
taxi k has its starting depot θk ∈ V de and can end its ride in arbitrary depot
θ ∈ V de.

For every node i ∈ V , the set of nodes following i is Γ+(i) and the set of
nodes preceding i is Γ−(i). The list T contains time points of taxi arrivals
to nodes and departures from nodes. The maximum waiting time allowed at
point v ∈ V is ωmax

v . At every node i ∈ V po∪V pd∪V fo∪V fd, a passenger or
parcel is loaded on the taxi or unloaded from the taxi. The change of weight
of the taxi after visiting point i is denoted by ϕi. In the case of pickup, ϕi

is positive, in the case of delivery, it is negative. The cost of the route from
node i to node j is denoted by γi,j .

8



...............................3.1. Mathematical Formulation

The following integer program represents the problem of optimization of
taxi routes:

min
∑
k∈K

∑
(i,v)∈E

γi,jxk
i,j (3.1)

subject to:∑
j∈Γ+(i)

∑
k∈K

xk
i,j ≤ 1, ∀i ∈ V po ∪ V pd ∪ V fo ∪ V fd (3.2)

∑
j∈Γ+(i)

xk
i,j = yk

i , ∀i ∈ V po ∪ V fo, k ∈ K (3.3)

∑
j∈Γ+(i)

xk
i,j =

∑
j∈Γ−(i)

xk
j,i, ∀i ∈ V, k ∈ K (3.4)

∑
j∈Γ+(i)

xk
i,j =

∑
j∈Γ−(i+s)

xk
j,i+s, ∀i ∈ V po ∪ V fo, k ∈ K (3.5)

xk
i,i+s = yk

i , ∀i ∈ V po, k ∈ K (3.6)
ak

j = (dk
i + ti,j)xk

i,j , ∀(i, j) ∈ E,∀k ∈ K (3.7)
ei ≤ ak

i ≤ li, ∀i ∈ V po ∪ V pd ∪ V fo ∪ V fd, k ∈ K
(3.8)

ak
θ − dk

θk
≤ τmax

k , ∀k ∈ K, θk ∈ V de, θ ∈ V de (3.9)
dk

i − ak
i ≤ ωmax

i , ∀i ∈ V po ∪ V pd ∪ V fo ∪ V fd, k ∈ K
(3.10)

wk
j = (wk

i + ϕj)xk
i,j , ∀(i, j) ∈ E,∀k ∈ K (3.11)

wk
i ≥ max{0, ϕi}, ∀i ∈ V, k ∈ K (3.12)

wk
i ≤ min{σk, σk + ϕi}, ∀i ∈ V, k ∈ K (3.13)

The variable xk
i,j is equal to 1 if taxi k goes from point i to point j (0

otherwise) ∀(i, j) ∈ E. Variable yk
i is equal to 1 if request i is served by taxi

k (0 otherwise) ∀i ∈ V po ∪V fo, k ∈ K. The time point when taxi k arrives at
point i and departs from point i is denoted by variables ak

i and dk
i respectively.

A load of taxi k after visiting stop v is wk
v ,∀v ∈ V .

The objective function (3.1) minimizes the overall cost which is calculated
as the sum of the costs of all edges that were used by taxis. Constraints (3.2)
and (3.3) ensure that every request is served at most once. Constraint (3.4)
maintains conservation flow at all nodes, i.e., the same number of vehicles
that came into a node must also come out of this node. Constraint (3.5)
enforces that if a passenger or parcel is picked up, it must be delivered and
constraint (3.6) enforces that the passenger is delivered directly without any
intermediate stops. Constraint (3.7) links the arrival, departure, and travel
time between two points. Constraint (3.8) forces that the arrival time of the
taxi to the node is inside of the time window. Constraint (3.9) limits the
maximum riding time of the taxi. Constraint (3.10) limits the maximum

9



3. Problem description..................................
waiting time at stops. Constraints (3.11), (3.12), and (3.13) restrain the taxi
loads - (3.11) ensures that the carried weight is updated after the taxi leaves
the node, (3.12) controls the lower bound of the taxi load and (3.13) controls
the upper bound of the taxi load.

10



Chapter 4
Solution - Baseline method

In this chapter, we will describe the solution using the heuristic method from
[10]. The proposed method tries to minimize the overall cost, as described
in the previous chapter. The input of the algorithm is requests sorted in
ascending order by their pickup times. For each request, the algorithm tries
to insert the request into the plan of every taxi, which is available at the
time of pickup. From all possibilities, it selects the option which increases
the overall cost the least. The algorithm considers the possibility of rejecting
the request if there are no available taxis found.

We used Heuristic algorithm for sharing model and Find a schedule for
trajectory Pk of taxi k from chapter 4 of study [10] and modified them for
our purposes. We work with a dynamic scenario instead of a static one, so
the Heuristic algorithm is called repeatedly and every time it gets a batch of
new requests to process. In comparison with Find a schedule algorithm, we
do not search for a free parking place in case a taxi arrives too early to the
next point. That is because it simply cannot happen in a dynamic scenario.
When the solver receives a new request, the passenger or the parcel is already
waiting at the pickup location, therefore the taxi cannot arrive there early.
To simplify the problem we calculate the cost by the traveled distance. This
means that the objective of our algorithm is to minimize the overall traveled
distance.

4.1 Find taxi plans

Each action in the plan has an early time value (the earliest time when
the request can be picked up), and an late time value (the latest time when
the request can be picked up). In the first step of Algorithm 1, all requests
are sorted incrementally by the late time of their pickup action and are put
into a new list V ′. For each request r ∈ V ′, we select taxis that are currently
available to serve request r into a list Ka. This selection process is described
in Algorithm 2. If the list Ka is not empty, we proceed to check the validity
of potential new vehicle plans (if there are no available taxis at the moment,
the request is rejected). This process is described in Algorithm 3. If the new
plan with request r is valid, the algorithm proceeds to calculate the new total

11



4. Solution - Baseline method...............................
cost. If the new total cost ck

r is lower than the current lowest cost c∗, the c∗

is updated along with the best taxi k∗. If the k∗ was found, it gets selected
to serve request r. Otherwise, we reject the request.

Algorithm 1 Find taxi plans
1: V ′ = ∅
2: Sort new requests incrementally by pickup lateT ime into list V ′

3: for all request r ∈ V ′ do
4: Ka ← SelectAvailableTaxis()
5: if Ka is not empty then
6: c∗ =∞
7: for all taxis k ∈ Ka do
8: Insert request r into vehicle plan Pk of taxi k
9: TrySchedule(Pk)

10: ck
r = new total cost in case taxi k serves request r

11: if ck
r < c∗ then

12: c∗ = ck
r

13: k∗ = k
14: end if
15: end for
16: if k∗ ̸= None then
17: Insert request r into route of taxi k∗

18: Update the total cost
19: else
20: Reject request r
21: end if
22: else
23: Reject request r
24: end if
25: end for

4.2 Selecting available taxis

The Algorithm 2 goes through all taxis and selects those which are currently
available. A taxi is considered available when it currently is not carrying a
passenger and if the request is a parcel request, it has to have enough free
freight capacity as well.

4.3 Checking validity of vehicle plan

The Algorithm 3 illustrates the procedure to set up time windows in the
vehicle plan Pk of taxi k. We consider only one variant of plan Pk in which
the actions’ order is determined by their late time (the maximum time in
which they must be picked up). Then for every node Pk[j], j ∈ [0, |Pk| − 1]

12



................................... 4.4. Time complexity

Algorithm 2 Select available taxis
1: Let K be the set of all taxis
2: Ka = ∅
3: for all taxi k ∈ K do
4: if taxi k is not currently carrying a passenger then
5: if current request is passenger then
6: Ka += taxi k
7: else
8: if taxi k has sufficient capacity for the package then
9: Ka += taxi k

10: end if
11: end if
12: end if
13: end for
14: Return Ka

we check the type of action. If the action is a dropoff, we can proceed to
the calculation of time windows straight away. If the action is a pickup,
we need to distinguish between passenger and parcel. For the passenger,
we simply check whether there is another passenger onboard already. For
the parcel, we check the sufficient capacity of the taxi k at the moment of
pickup. If the capacity is sufficient then the algorithm proceeds to calculate
the time windows. Otherwise, the algorithm terminates, because the schedule
is not feasible. Next, we set up the time windows for the current action. We
calculate the time needed for the taxi to get from Pk[j] to Pk[j + 1] and store
it in time. Then we calculate the early time and late time in which taxi k
can reach node j + 1. On line 9, we check if the early time is not greater than
lPk[j+1] (the taxi arrives at the pickup point late). If everything is correct,
then the new schedule is feasible and we return it.

4.4 Time complexity

Let s is the overall number of requests, and K be the set of taxis. We
take every request and for every available taxi, we check the validity of its
plan. So we do the plan checking for at most s requests and at most |K|
taxis, which is at most s × |K| times. Theoretically, the plan can contain
all requests, thus having the length s. Finding the distance between the two
following locations in the vehicle plan is constant since we use the distance
matrix. Therefore the resulting time asymptotic complexity of our algorithm
is O(s× |K| × s), which reduces to O(s2 × |K|).

However, our algorithm will never reach the complexity O(s2×|K|), because
the length of the plan and the number of requests are bound together. In
the beginning, all taxi plans are empty and all requests are in a queue. We
are trying to insert 1 request into some plan, but since all plans are empty
we do only |K| checks of length 1. Theoretically, the longest plan we can
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4. Solution - Baseline method...............................
Algorithm 3 Try schedule (Pk)

1: for all node index j ∈ [0, |Pk| − 1] in vehicle plan Pk do
2: a = current action at node Pk[j]
3: if a is delivery OR (a is pickup AND taxi k can carry current passen-

ger/parcel) then
4: Let time is the time to travel from Pk[j] to Pk[j + 1]
5: Let earlyT ime = ePk[j] + time
6: Let lateT ime = lPk[j] + time
7: if earlyT ime ≥ lPk[j+1] then
8: Terminate - Schedule is not feasible
9: end if

10: ePk[j+1] = maximum(earlyT ime, ePk[j+1])
11: lPk[j+1] = minimum(lateT ime, lPk[j+1])
12: else
13: Terminate - Schedule is not feasible
14: end if
15: end for
16: Return new plan Pk

have is if all requests except the one we are currently checking were in one
plan - it would have the length of s− 1. In that case, we would do only one
check of the plan of length s, and at most |K| − 1 checks of a plan of length
1 (all other taxis would have empty plans). The last extreme is if we have
all requests except the one equally distributed in all taxi plans. In this case,
we are trying to insert 1 request into |K| plans that have a length of some
fraction of s. So the asymptotic complexity here is O(s × |K|). The usual
case will be something between these extremes.
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Chapter 5
Solution - Improved method

In this chapter, we propose two improvements to the baseline method. As
the first improvement, we allow more than one passenger to be onboard at
the same time and we also allow interruptions of the passenger’s ride. We
expect the number of shared requests to increase, thus, reducing the mileage
and the number of used vehicles, and also increasing the vehicle occupancy.
As the second improvement, we implement the insertion heuristic [2]. The
insertion heuristic (for Vehicle Routing Problem) takes every request and for
every vehicle plan, it tries to insert the request on every plan position. This
should utilize the vehicle fleet even better and further lower the total traveled
distance and the number of vehicles needed because we search through many
possible variants of one taxi plan.

5.1 Multiple passengers heuristic

In this section, we introduce the Multiple passengers heuristic. We decided
to allow transportation of more than one passenger onboard at the same time.
This means that we have to allow stops during the ride of a passenger so that
another passenger could get in the taxi. When the passenger’s ride can be
interrupted because of another passenger, it makes sense to allow interrupting
the passenger’s ride to load and unload the package as well.

5.1.1 Selecting available taxis

Since some conditions are relaxed, we need to tweak the Algorithm 2 for
selecting available vehicles. Now, for passenger requests, we can select as an
available vehicle also the one that is currently carrying a passenger (or several
passengers), but it must have a free seat. Similarly, for parcel requests, we
can select a vehicle carrying a passenger, as his ride may be interrupted. The
only condition is that there is enough free freight capacity. This modified
algorithm is shown in Algorithm 4.
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5. Solution - Improved method ..............................
Algorithm 4 Select available taxis

1: Let K be the set of all taxis
2: Ka = ∅
3: for all taxi k ∈ K do
4: if current request is of type person then
5: if taxi k has sufficient capacity for the person then
6: Ka += taxi k
7: end if
8: else
9: if taxi k has sufficient capacity for the package then

10: Ka += taxi k
11: end if
12: end if
13: end for
14: Return Ka

5.1.2 Checking validity of vehicle plan

Request actions are inserted into the vehicle plan the same way as in the
base version. The algorithm for checking the plan’s validity is the same as
Algorithm 3 however the condition on line 3, determining the taxi’s ability to
perform the current action of its plan, is relaxed. When checking this, we do
not need to check if there is a passenger onboard. If the action is a delivery,
we can perform it without any limitations. If the action is a pickup, we check
the sufficient capacity, either for a passenger or for a parcel.

5.2 Multiple passenger Insertion Heuristic

As the second improvement, we implemented the insertion heuristic [2].
Instead of inserting the new pickup and dropoff action at only one position in
the current vehicle plan determined by the late time, we try to put the new
actions at all possible positions in the current vehicle plan. The pseudocode
for this method is shown in Algorithm 5. For a given request, we try to put
the pickup action on every position in the current vehicle plan, and for each
of these possibilities, we try to put the dropoff action on every position after
the pickup action. On line 13 we proceed to the Algorithm 3 with the new
Pk, however, when we check if taxi k can carry the current passenger/parcel,
we use the check from the Multiple passenger heuristic 4 (i.e., we check only
sufficient capacity).

5.3 Time complexity

In the Multi-passenger Insertion heuristic, we do the same procedure as in
the Baseline heuristic but we do it for every combination of pickup action and
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................................... 5.3. Time complexity

Algorithm 5 Insertion heuristic to find taxi plans
1: V ′ = ∅
2: Sort new requests incrementally by pickup lateT ime into list V ′

3: for all request r ∈ V ′ do
4: Ka ← SelectAvailableTaxis()
5: if Ka is not empty then
6: c∗ =∞
7: for all taxis k ∈ Ka do
8: Pk ← current plan of taxi k
9: for all index i ∈< 0, |Pk| > do

10: for all index j ∈< i + 1, |Pk|+ 1 > do
11: Insert pickup action into Pk at index i
12: Insert drop-off action into Pk at index j
13: TrySchedule(Pk) with updated trajectory Pk

14: ck
r = new total cost if taxi k serves request r using Pk

15: if ck
r < c∗ then

16: c∗ = ck
r

17: k∗ = k
18: end if
19: end for
20: end for
21: end for
22: if k∗ ̸= None then
23: Insert request r into route of taxi k∗

24: Update the total cost
25: else
26: Reject request r
27: end if
28: else
29: Reject request r
30: end if
31: end for

dropoff action positions in the vehicle plan. The plan theoretically can have
the length s (the number of all requests), so the Insertion heuristic increases
the complexity by s2. The resulting time complexity for the Multi-passenger
Insertion heuristic is the time complexity of the Baseline heuristic multiplied
by s2: O(s2 × |K| × s2), which reduces to O(s4 × |K|).
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Chapter 6
Implementation

We implemented both of the previously described methods in SiMoD 1.
SiMoD is a simulation tool for Mobility-on-Demand systems developed by the
Smart Mobility group of AI Center, CTU in Prague. It is based on Agentpolis 2

traffic simulation framework. It is lightweight, highly customizable, and can
run simulations with tens of thousands of vehicles and passengers with no
problems. SiMoD and Agentpolis are both written in Java 11.

First, we implemented the solver of the baseline method on its own and
tested it using unit tests. Then we integrated it into the simulation environ-
ment and measured the results. Finally, we implemented our improved solver
and measured the performance.

6.1 Solvers implementation

The DARP solvers in SiMoD receive requests and create new vehicle plans.
These plans are lists of pickup and dropoff actions that contain information
about the passenger/parcel to which the action belongs, the position where
the action takes place, and the maximum time in which the action must
be completed. When implementing our solvers we had to extend SiMoD
with package delivery functionality first because SiMoD was not capable of
transporting anything else besides people.

First, we had to create a new class for a package. Second, we had to
find a way to distinguish between passenger requests and package requests.
We needed to be able to put both passenger and parcel requests in one list
and differentiate them afterward. The parcel request also needed an extra
parameter: parcel weight. Therefore we introduced new request classes (one
for passenger and one for parcel) which inherit from the existing default
request. Finally, we added new vehicles with package-handling functionality
and separated capacity for passengers and freight. These vehicles also keep
track of the combined vehicle occupancy, i.e., the number of both passengers
and parcels currently carrying.

1https://github.com/aicenter/simod; this thesis is available on the branch
https://github.com/aicenter/simod/tree/blaham17_people_parcels_share

2https://github.com/aicenter/agentpolis
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6. Implementation....................................
After these modifications, we were able to implement our solver and test

its correctness using unit tests.

6.2 Integration into SiMoD

The requests in SiMoD are loaded from a text file. We needed to make a
new method for loading the package requests. When the requests are loaded,
they are transformed into events and put into an event queue. Due to this, we
needed to make a new type of event for a package. When the simulation time
reaches the time of request origin, the event emerges from the event queue
and it is handled by the RidesharingDispatcher. This class is responsible
for handling new requests in SiMoD and triggering the calculation of the new
plans. It receives the new requests, stores the waiting requests, and every
30 seconds the replan() method is called. This method first removes from
waiting requests every request that has been waiting too long, i.e., the current
simulation time exceeded the maximum pickup time of the request. Next,
it calls the solve() method of our DARP solver with the new and waiting
requests. Lastly, the Ridesharing Dispatcher class updates the vehicle plans
of all taxis - it rewrites the current vehicle plans with the new ones obtained
from the DARP solver. The RidesharingDispatcher also keeps track of
the number of dropped requests. We had to modify it so it could handle
also package requests and keep track of total shared requests (a request is
considered shared if it shares part of or the whole ride with another request).
Simplified class diagrams are shown in Figures 6.1 and 6.2.

6.3 SiMoD input and output

As an input, SiMoD takes a text file with trip records. On each line, there
is one record with several parameters: request origin time, coordinates of
request origin, and coordinates of request destination. For parcel request
records we had to add a weight parameter. SiMoD has a console output,
where there is periodically printed information about ongoing simulation and
several statistics, e.g., the number of new requests for this period, the total
number of dropped requests, or the total number of shared requests. SiMoD
outputs these and other statistics (mileage, occupancy, etc.) also into CSV
and JSON files.

6.4 Visualisation

When we run the simulation, the graphical user interface appears in a new
window, as shown in Figure 6.3. We can zoom in and out and also move
the map view. In the top left corner, we see the current simulation time
in seconds, and in parentheses, we see the simulation speed which can be
increased and decreased. We can also pause the simulation. There is also the
framerate and the timestamp. In the bottom left corner is shown information
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.....................................6.4. Visualisation

Figure 6.1: Simplified class diagram for vehicle and request classes. Newly
implemented classes are colored green, modified classes are colored orange, and
original classes are colored white. A name in italics indicates an interface. The
arrow means that the class, it is pointing to, inherits from the other class. The
dashed line indicates that the connected classes have some interaction between
them.

about the current view. On the right side is a user interface for highlighting
nodes or vehicles. Finally, at the bottom right corner is the interface for
recording the simulation and toggling the viewed layers of the simulation. In
Figure 6.4 we can see the running simulation.
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6. Implementation....................................

Figure 6.2: Simplified class diagram for main simulation-related classes, dis-
patcher, visualization layer, and heuristic solvers. Newly implemented classes
are colored green, modified classes are colored orange, and original classes are
colored white. The arrow means that the class, it is pointing to, inherits from
the other class. The dashed line indicates that the connected classes have some
interaction between them.
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Figure 6.3: The simulation window at the start of an experiment
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6. Implementation....................................

Figure 6.4: Running simulation in SiMoD with highlighted taxi. Red dots mark
passenger requests and green dots mark parcel requests. Taxis are marked with
blue triangles. The highlighted taxi also shows the number of passengers onboard
(in this case 0). The current taxi plan is highlighted with yellow color. Pickup
points on highlighted route are marked with turquoise dots and delivery points
are marked with pink dots. These points also show an ID of the request they
belong to. The pink squares mark the depots. Each depot has a numeric ID
marked with a black number and the pink number indicates the number of taxis
currently in the depot.
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Chapter 7
Evaluation

In this chapter, we will describe the dataset and map we used for the
evaluation of methods presented in Chapter 4 and Chapter 5. Then we
compare the results of those methods.

7.1 Testing environment description

In this section, we describe the conditions under which we performed the
experiments: the characteristics of demand, the road network used, the vehicle
fleet, and the depots.

7.1.1 Demand data

For testing our heuristic methods we used 2014 Yellow Taxi Trip Data
available on the NYC Open Data website 1. This dataset contains 165 114 361
trips. To reduce the area for evaluation, we chose only requests which have
both pickup and dropoff action located in Manhattan. We created datasets
for three scenarios:..1. 24k requests in 24 hours..2. 25k requests in 1 hour..3. 50k requests in 1 hour

For all three scenarios, we selected a certain amount of trips from a usual
weekday 12th of January. In the first scenario, we filtered the trips so that
it was similar to the dataset in [10], i.e., on average 1000 requests per hour
throughout the whole day. Therefore we divided the overall Manhattan
demand from the 12th of January (360 000 requests) by 15 and got 24 000
requests within 24h. For the second scenario, we filtered requests between
0:00 and 1:00 which is 25 030 demands. For the third scenario, we filtered
50 415 requests from 13:00 to 16:00 and shifted their times to be within the
1-hour time span. Of these three amounts of requests, some were discarded
after processing in SiMoD since they had zero length. Therefore the resulting
numbers are lower by 150 to 300 requests. Demand histograms for every
scenario can be seen in Figures 7.1, 7.2, and 7.3. In each of these scenarios,

1https://data.cityofnewyork.us/Transportation/2014-Yellow-Taxi-Trip-Data/
gn7m-em8n
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7. Evaluation ......................................

Figure 7.1: Demand histogram for the first scenario

Figure 7.2: Demand histogram for the second scenario

randomly half of the requests were changed from people to parcels (every
request had a probability of 0.5 to be changed to a parcel request) and they
were assigned random weight values from set {5, 10, ..., 30}, where smaller
packages were more common than bigger ones. Demand heatmaps are shown
in Figure 7.6.

7.1.2 Road network

In our simulation environment, we used the area of Manhattan island and
its surroundings. In terms of coordinates, it is an area with a latitude from
N40.692274° to N40.83049° and a longitude from W74.065236° to W73.865596°.
The graph representing this area has 13 512 nodes and 31 357 edges. Due to
the demand distribution, almost all taxis do not leave Manhattan during the
simulation, however exceptionally part of their route lies outside of Manhattan.
The road network used in the simulation is shown in Figure 7.4.
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Figure 7.3: Demand histogram for the third scenario

7.1.3 Vehicles

For each scenario, we chose the number of vehicles proportional to the
frequency of requests. To make the methods comparable, we set the number
of vehicles such that the number of dropped demands was little to none for all
methods. For the first scenario, it was 600 vehicles, for the second it was 5000
and for the third one, it was 9000. Each vehicle has a maximum capacity
of 4 passengers and a maximum weight capacity of 100. Due to the weights
of the packages, the vehicle can carry at most 3 largest packages (with a
weight of 30) or at most 20 smallest ones (with a weight of 5). At the start
of each experiment, the vehicles were equally distributed in 40 depots across
Manhattan island. The map of depots is shown in Figure 7.5.

7.2 Results

In the three experiments described above, we measured several statistics,
such as the total traveled distance, the number of used vehicles, the number
of shared requests, etc. These statistics are shown for the first experiment
in Table 7.2, for the second in Table 7.3, and for the third in Table 7.4.
Served demands, dropped passenger demands, and dropped package demands
together give the overall number of requests for the current experiment.
Shared demands are the number of requests which were shared, i.e., for a
part of its route or the whole route it was in a taxi together with at least
one another request. The average computation time is the average time to
compute vehicle plans for one batch of requests. The average delay is how
much were the requests delayed on average in seconds.

From Table 7.2 we see that in the first experiment, the number of shared
requests of the Multi-passenger heuristic is more than triple the baseline
method, and the number of shared requests of the Multi-Insertion heuristic
is almost 7 times more than the baseline method. However, the mileage of
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7. Evaluation ......................................

Figure 7.4: Used road network for Manhattan and surrounding areas

the Multi-passenger heuristic compared to the baseline method is lower by
only 4 % and the mileage of the Multi-Insertion heuristic is lower by 11 %. In
the number of used vehicles, the difference is only 4 % and 8 % respectively.
The average computational time is zero because it was rounded down from
less than 1 ms. In this experiment, our methods do not improve the overall
efficiency significantly.

In the second experiment (Table 7.3), there was again only a small difference
in the performance of the baseline heuristic and the Multi-passenger heuristic,
except for the number of shared requests. However, in the results of the
Multi-Insertion heuristic, we can see significant improvement. The number
of shared requests is more than double compared to the baseline method -
83 % of all requests were shared. We used 16 % fewer vehicles and reduced
the mileage by 19 %.

Table 7.4 shows the results of the third experiment. Here are the differences
between the methods most significant. The percentage of shared requests out
of all requests is 36 % for the baseline heuristic, 57 % for the Multi-passenger
heuristic, and 90 % for the Multi-Insertion heuristic. Compared to the baseline
method, the Multi-Insertion heuristic reduced the number of used vehicles by
28 % and the mileage by 40 %.

Along with the statistics in the Tables, we also measured vehicle occupancy,

28



....................................... 7.2. Results

Baseline
heuristic

Multi
passenger
heuristic

Multi-Insertion
heuristic

Ridesharing rates [%] 7.7 11.8 23.71
Ridesharing with delivery rates [%] 5.2 6.3 13.2

Table 7.1: Ridesharing rates table for the 3rd experiment (50k requests in 1h)

which displays the effectiveness of ridesharing. We measured the occupancy of
passengers and parcels combined, otherwise, we would not see the dependence
of these two quantities. Combined occupancy 3D histograms for the first, the
second, and the third experiment can be seen in Figures 7.7, 7.8, and 7.9
respectively.

In the first two experiments, the differences between methods in terms of
mileage and the number of used vehicles were minor. The only significant
difference was in the number of shared requests. The Multi-Insertion heuristic
had 41 % shared requests in the first experiment and 83 % in the second one.
However, when we look at the occupancy histograms, the ridesharing rates
are only 5 % and 18 %. And the ridesharing with delivery rates are even
lower: less than 5 % in the first experiment, and only 11 % in the second
experiment. For the other methods, the ridesharing with delivery rates in
the first experiment were negligible. In the second experiment, however, the
Baseline heuristic and the Multi passenger heuristic had ridesharing with
delivery rates around 7.5 %. The number of shared requests is quite deceiving
because it does not say anything about how efficiently were the vehicles used
in terms of occupancy. In terms of vacant taxis, in the first experiment, all
methods performed similarly. In the second experiment, the Multi-Insertion
heuristic was 10 percentage points better than the other methods.

In the third experiment, the differences between the three methods were
most significant. The Multi-Insertion heuristic reduced the mileage by 40 %
and used 28 % fewer vehicles, compared to the Baseline heuristic. Shared
demand rates for the Baseline heuristic, Multi passenger heuristic, and Multi-
Insertion heuristic were 36 %, 57 %, and 90 % respectively. However, the
ridesharing rates are again much lower. They are shown in Table 7.1. The
vehicle vacancy rates in the third experiment are over 40 % for the Baseline
method, over 35 % for the Multi-passenger method, and 25 % for the Multi-
Insertion method.

From the tables and occupancy histograms, we see that in all three ex-
periments, our improved method performed out of the three methods the
best in terms of all measured statistics (except for the computational time
due to greater time complexity). The difference in efficiency of the solution
was more significant in bigger instances with greater demand density. It met
our expectations and outperformed the Baseline method in terms of fleet
utilization. However, it could still be improved in terms of ridesharing rates.
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Baseline
heuristic

Multi
passenger
heuristic

Multi-Insertion
heuristic

Total veh. distance [km] 333 601 321 677 297 733
Served demands 23 764 23 830 23 831
Dropped passenger demands 51 10 13
Dropped package demands 36 11 7
Shared demands 1417 4317 9880
Used vehicles 475 458 437
Avg. comp. time [ms] 0 0 0
Avg. delay [s] 385 389 381

Table 7.2: Methods comparison table for the 1st experiment (24k requests in 24h)

Baseline
heuristic

Multi
passenger
heuristic

Multi-Insertion
heuristic

Total veh. distance [km] 193 415 189 864 157 860
Served demands 24 827 24 873 24 879
Dropped passenger demands 40 5 3
Dropped package demands 17 6 2
Shared demands 9641 14 099 20 676
Used vehicles 5000 5000 4195
Avg. comp. time [ms] 3 4 4
Avg. delay [s] 421 405 376

Table 7.3: Methods comparison table for the 2nd experiment (25k requests in 1h)

Baseline
heuristic

Multi
passenger
heuristic

Multi-Insertion
heuristic

Total veh. distance [km] 362 231 342 511 251 109
Served demands 50 116 50 119 50 120
Dropped passenger demands 5 2 1
Dropped package demands 3 3 3
Shared demands 18 246 28 752 45 112
Used vehicles 9000 8671 6477
Avg. comp. time [ms] 9 11 11
Avg. delay [s] 387 385 353

Table 7.4: Methods comparison for the 3rd experiment (50k requests in 1h)
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Figure 7.5: Map of the depots
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(a) : The first scenario (b) : The second scenario

(c) : The third scenario

Figure 7.6: Demand heatmaps
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(a) : Baseline

(b) : Multi passenger

(c) : Multi-Insertion

Figure 7.7: Combined occupancy for the first scenario. The vertical axis shows
the percentage of the time for the occupancies.
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(a) : Baseline

(b) : Multi passenger

(c) : Multi-Insertion

Figure 7.8: Combined occupancy for the second scenario. The vertical axis
shows the percentage of the time for the occupancies.
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(a) : Baseline

(b) : Multi passenger

(c) : Multi-Insertion

Figure 7.9: Combined occupancy for the third scenario. The vertical axis shows
the percentage of the time for the occupancies.
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Chapter 8
Conclusion

In the last few years, the demand for urban transport is increasing, and
the number of vehicles in cities is rising. Ridesharing has a big potential
since it could solve the problems arising from too many cars occupying urban
streets, like excessive air pollution, traffic jams, and a lack of parking places.
There are two vehicle transport services in cities nowadays: taxi and delivery
service. But these two operate separately.

In this work, we tried to improve the efficiency of taxi services and delivery
services in urban areas by combining these two together. First, we studied
the literature on the topic of ridesharing and package delivery and defined
this problem mathematically in Chapter 3. Then we implemented an existing
method described in Chapter 4 into SiMoD. Next, we proposed some improve-
ments to this method in Chapter 5. We also implemented it and for this,
we needed to create several new classes and methods in SiMoD, and modify
some of the existing classes, as described in Chapter 6. Finally, we measured
the performances of all these methods and compared them in Chapter 7. We
successfully created an improved method, which outperformed the baseline
method in terms of fleet utilization. In future work, we could improve the
low vehicle occupancy. By modifying the available-taxi selecting algorithm,
we could for example prefer to select occupied taxis, therefore increasing the
ridesharing rates.
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Appendix A
Attachment content

• packages_manhattan_24k_24h.txt packages demand for the 1st scenario
• packages_manhattan_25k_1h.txt packages demand for the 2nd scenario
• packages_manhattan_50k_1h.txt packages demand for the 3rd scenario
• people_manhattan_24k_24h.txt passengers demand for the 1st scenario
• people_manhattan_25k_1h.txt passengers demand for the 2nd scenario
• people_manhattan_50k_1h.txt passengers demand for the 3rd scenario
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